A hedonically complex odor mixture produces an attentional capture effect in the brain

نویسندگان

  • Fabian Grabenhorst
  • Edmund T. Rolls
  • Christian Margot
چکیده

A counter-intuitive property of many pleasant and attractive stimuli is that they are hedonically complex, containing both pleasant and unpleasant components. A striking example is the floral scent of natural jasmine, which may contain more than 6% of indole, a pure chemical which is usually rated as unpleasant. Using fMRI we investigate the hypothesis that the interaction between the pleasant and unpleasant components in the hedonically complex natural jasmine produces an attentional capture effect in the brain. First, to localize brain areas involved in selective attention to odor, we compared neural activity in response to jasmine without indole when participants explicitly and selectively attended to either its pleasantness or intensity, with neural activity when no selective attention was required. We then show that the superior frontal gyrus has increased activity both when selective attention is being paid to jasmine without indole, and also when no selective attention is required but an unpleasant component is added to it to produce a hedonically complex mixture. The attentional capture effect in the superior frontal gyrus by the mixture was related to the hedonic complexity of the mixture across subjects; could not be explained by salience, intensity, or pleasantness; and was specific to the superior frontal gyrus in that it was not found in other prefrontal areas activated by selective attention. The investigation supports the new hypothesis that the affective potency of stimuli with mixed pleasant and unpleasant components is related at least in part to the recruitment of mechanisms in the brain involved in attentional capture and enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How pleasant and unpleasant stimuli combine in different brain regions: odor mixtures.

Many affective stimuli are hedonically complex mixtures containing both pleasant and unpleasant components. To investigate whether the brain represents the overall affective value of such complex stimuli, or the affective value of the different components simultaneously, we used functional magnetic resonance imaging to measure brain activations to a pleasant odor (jasmine), an unpleasant odor (...

متن کامل

Brain responses to odor mixtures with sub-threshold components

Although most odorants we encounter in daily life are mixtures of several chemical substances, we still lack significant information on how we perceive and how the brain processes mixtures of odorants. We aimed to investigate the processing of odor mixtures using behavioral measures and functional magnetic resonance imaging (fMRI). The odor mixture contained a target odor (ambroxan) in a concen...

متن کامل

Visual field asymmetry in attentional capture.

The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the right visual field, revealing a visual field asymm...

متن کامل

Neuronal Processing of Complex Mixtures Establishes a Unique Odor Representation in the Moth Antennal Lobe

Animals typically perceive natural odor cues in their olfactory environment as a complex mixture of chemically diverse components. In insects, the initial representation of an odor mixture occurs in the first olfactory center of the brain, the antennal lobe (AL). The contribution of single neurons to the processing of complex mixtures in insects, and in particular moths, is still largely unknow...

متن کامل

Characterization and Coding of Behaviorally Significant Odor Mixtures

For animals to execute odor-driven behaviors, the olfactory system must process complex odor signals and maintain stimulus identity in the face of constantly changing odor intensities [1-5]. Surprisingly, how the olfactory system maintains identity of complex odors is unclear [6-10]. We took advantage of the plant-pollinator relationship between the Sacred Datura (Datura wrightii) and the moth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 55 2  شماره 

صفحات  -

تاریخ انتشار 2011